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Power Law Decay of Correlations in a 
Billiard Problem 
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A billiard problem with boundary arcs that meet tangentially is studied both 
analytically and numerically. It is shown that the presence of tangential vertices 
leads to velocity correlations which decay like 1In where n is the number of 
collisions. This result contrasts with related billiard and Lorentz models where 
velocity correlations decay exponentially. 
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1. INTRODUCTION 

The present paper reports on a numerical and analytic study of a billiard 
problem. The model treated here consists of a curved triangular region in 
which a single point particle moves according to the laws of classical 
mechanics. The region, shown in Fig. 1, is formed by bringing together 
three circles, each with unit radius, so that they touch but do not overlap. 
Within this region the point particle moves with constant velocity and unit 
speed between elastic collisions with the boundary. 

The quantity studied in this work is the velocity correlation, q~(n), as a 
function of the number of collisions, n. q~(n) is defined by 

= (1) 
where ~3 o is the initial velocity and v~ is the velocity after the nth collision. 
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Fig. 1. The region in which the particle moves. The region is formed by bringing three circles 
of equal radius into contact. 

The bracket indicates an average over all initial directions, 130 and all initial 
positions within the region. 

The main conclusion of this paper is that, for large n, Iq~(n)l decays like 
1In and that for n > 5 it is well approximated by 

(-1)~ 
(2) 

where A is about 1. 
This power law decay of correlations is due to the fact that the circular 

arcs forming the boundary of the region meet tangentially. It is thus 
possible for the moving particle to become trapped for a large number of 
collisions in the region near one of these tangential vertices. During such a 
close approach to a vertex, the particle is bouncing between nearly parallel 
walls and so its velocity is strongly correlated from one collision to the next. 
The 1/n behavior of q~(n) then arises because the phase space available for 
remaining near a vertex for n collisions diminishes like 1In. 

The billiard problem studied here is the limiting case of a periodic 
Lorentz gas considered by Bunimovich and Sinai. (1) In this Lorentz gas, a 
single point particle moves in a two-dimensional periodic array of nonover- 
lapping disks. So long as there are no infinitely long free paths in this array, 
Bunimovich and Sinai (1) were able to prove that the asymptotic behavior of 
~(n) is dominated by an exponential of the form 

I,~(n)l < e - " '  (3) 

where T is a constant, 0 < T < 1. The present model is obtained from a 
periodic Lorentz gas on a triangular lattice by letting the diameter of the 
scatterers equal the lattice spacing. 
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The present model is also the limiting case of a billiard model in which 
the region where the particle moves is formed between three overlapping 
disks. A similar model was studied numerically by Casati eta/. (2) They 
considered a billiard in a region formed between four overlapping disks. 
They mention that the bound given in Eq. (2) should apply to this model 
and then show, numerically, that a certain correlation function [not q,(n)] 
indeed decays approximately like exp(-  1.4n~ 

Finally, we remark that asymptotic power law decays in velocity 
correlations as a function of time ("long-time-tails") are found in fluids, (3~ 
disordered Lorentz models, (4~ and disordered random walks. (5) In these 
cases and the model studied here, the power law decay of correlations is 
due to scale invariance. While the long-time tails found in disordered 
systems arise from the self-similarity of large length scales, the "many- 
collision tail" found here is due to the self-similarity of small length scales. 

In Section 2 the class of trajectories which closely approach a vertex is 
analyzed and shown to yield an asymptotic 1In contribution to [q)(n)]. In 
section 3 the results of a computer simulation of the model are presented. 
These results support the conjecture that [q~(n)[ itself decays like I/n for 
large n. The paper ends with a discussion. 

2. ANALYSIS OF THE DYNAMICS NEAR A VERTEX 

The motion of the particle in the region shown in Fig. 2 is character- 
ized by a sequence of collisions. Each collision can be described by two 
angles and a discrete label. Figure 2 shows two collisions and the four 

Fig. 2. The mth and (m + 1)th collisions and the parameters am, am+l, Om, and Om+ 1 used to 
describe them. 
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angles used to describe them. a m specifies the arc length from the mth 
collision to the nearest vertex. 0 m measures the angle that the velocity 
makes with the normal at the point of collision. 0 m takes negative values if 
the particle is approaching the vertex and positive values if it is receding, a m 
and 0 m lie in the ranges 

0 < a m ~< ~r/6 (4a) 

and 

-~r//2 < 0 m < ~r/2 (4b) 

The discrete label, % ,  takes on six values and describes which of six 
possible boundary faces the collision occurs on. Each face is an arc of the 
boundary that starts at a vertex and has a length 7r//6. In the foregoing 
analysis we will be concerned with sequences of collisions during which the 
particle bounces between two faces that adjoin the same vertex. It is 
convenient then to define an indicator function X(a, o') which takes the 
value 1 if o and o' are on adjoining faces and the value 0 otherwise. 

Elementary geometric considerations yield the following relation be- 
tween the ruth and (m + 1)th collisions when X(Om,%+~) = l: 

sinam+ 1 - sina m = [2 - cOSam+ 1 - -  cOSamltan(O m + am) (5a) 

Ore+ 1 -- 0 m = am+ 1 4- a m ( 5 b )  

Similar considerations show that 

0 m ~< ~ r / 2 -  4a m (6) 

is sufficient to ensure that X ( % ,  Om+ l) = 1. 
We shall now calculate the asymptotic contribution to ~(n) of the class 

of collision sequences which remain near a single vertex. Call this contribu- 
tion ~*(n). It is defined by 

**(El) -~- ~n" ~0 X(O0, O) l-I X((lm ' Ore+ 1) 
m=O 

= ( - - l > n ~  L:f;2f(Oo)dOofo'/6g(.o)d.oX(.o,.> 
n-I 

• H X(Om '~176 - ( -  1)'00] (7) 
m=O 

f(Oo) dO o and g (%)da  o are the natural measures for 00 and %, respectively, 

f(Oo) = �89 cos(00) (8a) 

and 

g(a0) = 1/~r (8b) 
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The quantity in the square brackets in Eq. (7) restricts the average to those 
trajectories where the particle bounces between the two faces connected to 
a single vertex. 

Time reversal symmetry permits us to restrict the averaging to those 
trajectories for which 10ol 100f so long as the average is then multiplied by 
2. Since 0m is an increasing sequence near a single vertex, the upper limit of 
the 0 0 integration can now be set to 0. The equivalence of the six faces 
allows us to replace the sum over o by fixing o 0 and multiplying by a factor 
of 6. Thus an equivalent expression for q~*(n) is 

~ * ( n ) -  6 ( - 1 ) ~  f__o cosOodOo foo~/6dao 
~r - .~/2 

n--1  

x II X(Om,Om+,)h(-Oo- en)COSEe. - (-1)ns01 (9) 
m = 0  

where h(x)  is the unit step function. 
We will now show that, for large n, the dominant contribution to ~*(n) 

arises from trajectories where a m is of order 1/n  and er/2 - 10m] >> a m for 
m = 0, 1 . . . .  , n. To justify this claim and to find the asymptotic behavior 
of q~*(n), let us analyze the behavior of trajectories in this regime. For  % 
small and 0 m not too near ~r/2, the difference equations which describe the 
motion, Eqs. (5a) and (5b), reduce to differential equations by making the 
substitutions 

t = ma o (10a) 

at/ao 
y ( t )  =-- (10b) 

n o 

and 

O(t) 0,/ o 
In the limit a 0 ~ 0 holding 0 m fixed we obtain 

dy _ y2 tan 0 
dt 

and 

(lOc) 

(11a) 

equations yield good approximations to the exact dynamics so long as 

--~ - IOml >> a m ( 1 2 )  2 

otherwise the singularity in the tangent on the right-hand side of Eq. (5a) 
will be governed by both a m and 0 m. 

dO 
dt - 2y (1 lb) 

In the regime where a o and 0o are both small these differential 
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Combining Eqs. (1 la) and (1 lb) and integrating yields the following 
relation between y(t) and 0(t): 

[ COS00 ] 1/2 
y(t)= cos0(0 (13) 

Combining this relation with Eq. (1 lb) and integrating yields the following 
expression for 0(t): 

~00(t)(cos X) 1/2 d3r = 2t (cos 0o)1/2 (14) 
o 

To simplify the notation, define the elliptic integral, 

= ~00(COS X)1/2 dx (l 5) I(O ) 

The formal solution to Eq. (14) is then 

O(t) = I - I [2 t / ' ( 00 )  + I(00) ] (16) 

For 00 < 0 the qualitative behavior of the solution is that O(t) is monotoni- 
cally increasing while y(t) diminishes to a minimum and then increases. 

Let 

~" = c~on (17)  

The restriction that 0, < - 0  o sets an upper bound on ,r. Solving Eq. (16) 
for ~- with 0(1-) = - 0o and noting that I '  is an even function whereas I is an 
odd function we obtain the upper bound T(Oo), 

"c < -I(0o)/I ' (0o)  =-- T(Oo) (18) 

For fixed n, this inequality sets an upper limit on the a o integration in 
Eq. (9), 

-  (00) 

e~ o < ni,(Oo---- ~ (19) 

and explains why the phase space available for very long trajectories near a 
vertex diminishes like 1 In. 

Using the same kind of reasoning, an n dependent lower bound for 0 o 
can be found which ensures that ~ r / 2 -  [0m[ >> o~,,. Let a ( n ) -  ~r/2 be a 
lower limit of integration for an estimate of the 00 integral in Eq. (9). We 
require that a(n) >> a0, so from Eq. (19) we obtain 

a(n)3/2>> I(~r/2)/n (20) 

by expanding the cosine near ~r/2. On the other hand, we would like to 
estimate q~*(n) in a way that becomes exact when n ~ ~ .  We can satisfy 
Eq. (20) and yet make a vanishingly small error in the 0 o integration by 
choosing a(n) so the a(n)~O but n2/3a(n) ---) ~ as n ~  oo. 
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Employing the substitution of Eq. (17) and taking the limit n ~ oo we 
obtain 

lim ( -  1)nn~*(n) 
n - - >  0 0  \ 

= lim 6 fo  cosOodOofor(~ [ 0( t " ) -  (-1)n00] + R 
n-~oz 'IT ~/2+a(n) 

(21) 

from Eq. (9). Note that the condition of Eq. (6) is satisfied so that the X 
factors can be omitted from the averaging. The remainder term takes the 
form 

g = lim 6n ( - ~/2 + a(n)co s 80 dOo(~/6dcto 
n---~oo 7/" , ) - ~ r / 2  J0  

n - 1  

X ~ X(tTm , O m + l ) h ( - O  0 - On)COs[O n - ( - 1 ) n 0 o ]  ( 2 2 )  
m = 0  

and is bounded by 

R < lira na(n) 2 (23) 

Thus a(n) can be chosen so that R vanishes and Eq. (20) is satisfied. 
In the Appendix it is shown that the terms odd in O(r) in Eq. (21) 

vanish on integration so that we obtain 

lim ( -  1)nn~*(n) = 6- ( 0  cos2OodOofor(oo)drcosO(r) = D (24) 
n ~ o o  " 7/" , ) _  ~r/2 0 

D is evaluated in the appendix and has the value D = 0.7295. 

3. COMPUTER RESULTS 

In this section, the results of a computer simulation of the billiard 
model are presented. In the computer experiment six trajectories were 
generated, each of 100,000 collisions. Using the presumed ergodicity of the 
model, ~(n) was computed from each trajectory by averaging 13n+ k �9 ~3 k over 
k. Figure 3 shows ( -  1)nn~(n) versus n for the range 1 < n < 30. Each point 
represents an average over the six runs. The error bars are the standard 
deviation. The spread in the data for odd n was considerably less than for 
even n as illustrated in Fig. 3 by neighboring pairs of error bars. The 
average of ( -  1)nn~(n) in the range 5 < n < 30 yields the value 0.54. 

The computer results are consistent with the hypothesis that 4~(n) 
decays like ( -  1)n/n for large n, although other functional forms cannot be 
ruled out. The oscillation in sign in q~(n) suggests that the main contribution 
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Fig. 3. The velocity correlation function times ( -  l)nn vs. n. 

to ~(n) arises from collisions sequences near a vertex, in agreement with the 
analysis of the previous section. On the other hand, the observed coefficient 
of 0.54 for the ( - 1 ) " / n  decay of 0(n) is significantly smaller than the 
coefficient, D = 0.73 found from the asymptotic analysis of those sequences 
of collisions that remain close to a single vertex. 

4. D ISCUSSION 

In the second section we analyzed the class of collision sequences of 
length n which remain close to one of the vertices. We found the contribu- 
tion of these collision sequences to the velocity correlation function, 0(n). 
This contribution, called q,*(n), behaves asymptotically like 

lim ( - 1 ) " q , * ( n ) n =  D 

with D = 0.7295. Thus ~(n) itself decays at least as slowly as 1/n unless the 
contribution from 0*(n) is fortuitously cancelled by some other class of 
collision sequences. 
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The results of the computer experiment support the hypothesis that 
q)(n) indeed decays like ( -  1)'/n. Thus, I conjecture that 

l i m  ( - 1)'nO(n) = A 

and that A is about one half. 
While q,*(n) and 0(n) behave in qualitatively the same way for large n, 

the coefficient of A extrapolated from the computer experiment does not 
agree with the coefficient D determined in the second section. One explana- 
tion for this is that the computer experiment has not yet probed the 
asymptotic regime. Another explanation, which I prefer, is that there is an 
additional class of collision sequences which contribute an asymptotic l / n  
term to ~(n). ! believe that these additional trajectories include repeated 
close encounters to the same vertex. Each encounter is separated by a 
collision on the wall opposite the vertex. 

The qualitative features of the analysis of the second section should 
hold more generally for any billiard model with tangentially meeting 
vertices. The only requirement is that at least one of the boundary arcs at 
each tangential vertex must have a nonzero curvature. The differential 
equations which describe the dynamics very near a particular vertex are the 
same as Eqs. ( l la) and (llb) except that the right-hand side of each 
equation is multiplied by (x 1 + ~2)/2. ~ and ~2 are the curvatures of the 
two boundary arcs at the vertex. Thus, the long time behavior of q~*(n) is 
generally of the form D ' ( - 1 ) ' I n .  D' will depend on the number of 
tangential vertices, the total length of the boundary and the values of the 
curvature of the boundary arcs at each vertex. 
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A P P E N D I X  

We wish to evaluate the integral 

D = 6 f?~/2cOsOodOofoT(Oo)drcos[ O('r)-  (-1) '001 ( i .  1) 

and to show that it does not depend on n. The n-dependent factor in the 
integrand is 

cos I 0(I-) - ( -  1)'0o] = cos 0(r 0 0 + ( -  1)'sin 0(r)sin 0 0 (A.2) 



564 Maehta 

Thus D will be independent of n if, for all 0o, 

0 r(~176 sin 00- ) = 0 (A.3) 

Let ~-' = r - T(Oo)/2; from Eqs. (16) and (18) we have 

00- ) = I-'[2~"I'(0o) ] (A.4) 
Since I -  l(x) and sin(x) are both odd in x, 

_r(Oo)/2 d'c' s i n / - ' [  2, '1'(0o) ] = 0 (A.5) 
T(Oo)/2 

and Eq. (A.3) is proved. Thus D reduces to 

D = 6-6- fo dOo(cosOo)2 fr(0o)/2 d'c'cosI-l[2.r'(cosOo)l/21 ( a . 6 )  
d - ~ /2  - ,3 - T(Oo)/2 

Making the substitution 

x = I-'[2~"(cosOo) 1/2] 

yields 

= 3 (o  a, Oo(cosOo) .fO;Jx(cos a-,~/2 x) 3/2 (A.7) 

Using the result 

we obtain 

q7 
fo~/2(cos x) 3/2 dx = 5(23/2 ) B (7/4, 7 /4)  (A.8) 

D = 0.7295 (A.9) 

NOTE ADDED IN PROOF 

The argument of the final cosines in Eqs. 7 and 9 should be: 

[ ( o .  - - ( -  1) (Oo- 

These omitted terms should be included in the remainder, R of Eq. 21. It is 
straightforward to verify that they vanish in the limit n--> oo. Thus the 
asymptotic result, Eq. 24, is unaffected. 
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